\qquad

Chemistry 150

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for non-multiple choice problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.
Avogadro's Number $=6.022 \times 10^{23}$ units $/ \mathrm{mol}$
$32.00^{\circ} \mathrm{F}=0.000^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
1 foot $=12$ inches
1 inch $=2.54 \mathrm{~cm}$ (exactly)
1 pound $=453.6 \mathrm{~g}=16$ ounces
$1 \mathrm{amu}=1.6605 \times 10^{-24} \mathrm{~g}$
Masses of subatomic particles:
Proton $1.00728 \mathrm{amu}=1.6726 \times 10^{-24} \mathrm{~g}$
Neutron $1.00866 \mathrm{amu}=1.6749 \times 10^{-24} \mathrm{~g}$
Electron $0.000549 \mathrm{amu}=9.1094 \times 10^{-28} \mathrm{~g}$
Density of Water $=1.000^{\mathrm{g}} / \mathrm{mL}$
$\mathrm{R}=0.08206^{\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}}$
$\mathrm{PV}=\mathrm{nRT}$

58	59	60	${ }^{61}$	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
-140.12	140.91	144.24	(145)	${ }_{150.36}$	-151.97	157.25	158.93	162.50	16493	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(24)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

\qquad

Multiple Choice: Circle the letter of the most correct response. (8pts. per question)

1. Which of the following is not a redox reaction?
a. $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
b. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
c. $2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaNO}_{3}(\mathrm{aq})$
e. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
2. Which of the following is not a correct gas law relationship?
a. $\mathrm{PV}=\mathrm{nRT}$
b. $\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
c. $\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$
d. $\mathrm{P}_{1} \mathrm{~T}_{1}=\mathrm{P}_{2} \mathrm{~T}_{2}$
e. $P_{1} V_{1}=P_{2} V_{2}$
3. Under which of the following conditions is a gas most likely to not be "ideal"?
a. High temperature, high pressure
b. High volume, low pressure
c. High pressure, low temperature
d. High pressure, high volume
e. Room temperature, $25^{\circ} \mathrm{C}$
4. Which of the following is the strongest acid?
a. $\mathrm{KOH}(\mathrm{aq})$
b. $\mathrm{HClO}_{4}(\mathrm{aq})$
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
e. $\mathrm{NH}_{3}(\mathrm{aq})$
5. In which of the following formulas does bromine have the highest oxidation number?
a. HBr
b. KBrO
c. $\mathrm{Mg}\left(\mathrm{BrO}_{2}\right)_{2}$
d. Br_{2}
e. $\mathrm{NH}_{4} \mathrm{BrO}_{3}$
6. Consider the following reaction:

$$
a \mathrm{KBr}(\mathrm{aq})+b \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow c \mathrm{PbBr}_{2}(\mathrm{~s})+d \mathrm{KNO}_{3}(\mathrm{aq})
$$

For every mol of $\mathrm{KBr}(\mathrm{aq})$ that reacts, how many mols of $\mathrm{PbBr}_{2}(\mathrm{~s})$ are formed?
a. 0.25 mols
b. 0.5 mols
c. 1 mol
d. 2 mols
e. 3 mols
7. Which of the following would you expect to be soluble in water?
a. CaCO_{3}
b. BaSO_{4}
c. $\mathrm{Hg}_{2} \mathrm{Br}_{2}$
d. $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
e. $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
8. Consider the following reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})-->\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is oxidized in this reaction?
a. $\mathrm{CH}_{4}(\mathrm{~g})$
b. $\mathrm{O}_{2}(\mathrm{~g})$
c. $\mathrm{CO}_{2}(\mathrm{~g})$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e. This is not a redox reaction

Multiple Choice Calculations (12pts each):

9. A 2.65 L steel tank contains an ideal gas at $15.83^{\circ} \mathrm{C}$ and 1.15 atm . If the tank is heated to 100.0 C , what is the pressure of the gas in the tank?
a. 7.26 atm
b. $\quad 1.48 \mathrm{~atm}$
c. 0.182 atm
d. 0.891 atm
e. 2.65 atm

10 . What is the volume of 6.192 mols of ideal gas at 0.651 atm pressure and $28.61^{\circ} \mathrm{C}$?
a. 22.3 L
b. 9.46 L
c. 6.14 L
d. 236 L
e. 99.8 L
11. You have dissolved 10.00 g of lithium fluoride in enough water to make 250.00 mL of solution. What is the concentration of the resulting solution?
a. $\quad 1.542 \mathrm{M}$
b. 1038 M
c. 0.001542 M
d. 0.8901 M
e. 40.00 M
12. A reaction produces 834.1 mL of ideal gas at standard temperature and pressure (STP). How many mols of gas did the reaction produce?
a. $\quad 37.21 \mathrm{mols}$
b. $3.602 \times 10^{-4} \mathrm{mols}$
c. $\quad 10.16 \mathrm{mols}$
d. 0.4066 mols
e. 0.03721 mols

Problems: (20pts each)

13. A large compressed air tank contains 325.0 L of air at a pressure of 10.65 atm pressure in a $21.25^{\circ} \mathrm{C}$ shop. If the tank is brought outside on a $14.61^{\circ} \mathrm{C}$ fall day and used to fill car tires, how many tires can be filled? Assume that a car tire has a volume of 24.6 L and is filled to a pressure of 2.55 atm .
14. 90.0 mL of 0.892 M magnesium nitrate solution is combined with 90.0 mL of 0.892 M ammonium phosphate solution.
a. Write a correctly balanced equation for the reaction that takes place.
b. How many grams of precipitate will this reaction form?
