\qquad

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.
Avogadro's Number $=6.022 \times 10^{23}$ units $/$ mo \quad Integrated Rate Laws:
$32.00^{\circ} \mathrm{F}=0.000^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Density of Water $=1.000^{\mathrm{g}} / \mathrm{mL}$
$\mathrm{R}=0.08206^{\mathrm{Latm} / \mathrm{mol} \cdot \mathrm{K}}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{PV}=\mathrm{nRT}$
$\Delta \mathrm{T}_{\text {fp/bp }}=\mathrm{k}_{\mathrm{fp} / \mathrm{bp}} \bullet \mathrm{m} \cdot \mathrm{i}$
For water, $\mathrm{k}_{\mathrm{fp}}=-1.86^{\circ} \mathrm{C} / \mathrm{m} ; \mathrm{k}_{\mathrm{bp}}=$
$0.52^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{P}_{1}=\mathrm{X}_{1} \mathrm{P}_{1}{ }^{\mathrm{o}}$
$\mathrm{P}=\mathrm{cRTi}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
Quadratic formula:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{gathered}
\ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{\mathrm{o}} \\
1 /[\mathrm{A}]_{\mathrm{t}}=\mathrm{kt}+1 /[\mathrm{A}]_{\mathrm{o}} \\
{[\mathrm{~A}]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{A}]_{\mathrm{o}}} \\
\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}} \\
\ln (\mathrm{k})=\left(\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\ln (\mathrm{A}) \\
\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugate base }]}{\text { [conjugate acid] }}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-{ }^{\mathrm{RT}} /{ }_{\mathrm{nF}} \ln \mathrm{Q} \\
& \mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}={ }^{\mathrm{RT}} /{ }_{\mathrm{nF}} \ln \mathrm{~K}^{\mathrm{o}} \\
& \mathrm{~K}^{\mathrm{o}}=\mathrm{e}^{\wedge}\left({ }^{\mathrm{nF}} /{ }_{\mathrm{RT}} \mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}\right) \\
& \mathrm{F}=96485^{\mathrm{J}} /{ }_{\mathrm{V} \cdot \mathrm{~mol} \text { of electrons }} \\
& \Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{~S}_{\text {system }}^{\mathrm{o}} \\
& \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}^{\mathrm{o}} \\
& \Delta \mathrm{G}=\Delta \mathrm{G}^{\mathrm{o}}+\mathrm{RT} \ln \mathrm{Q} \\
& \mathrm{~F}=96485^{\mathrm{C}} / \text { mol electrons } \\
& 1 \mathrm{~A}=1 \mathrm{Cec}
\end{aligned}
$$

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	$\mathbf{L u}$
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	$\mathbf{P a}$	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(24)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Multiple Choice (5pts each)

1. The symbol $\Delta \mathrm{S}$ represents:
a. Change in entropy
b. Change in solubility
c. Change in enthalpy
d. Change in free energy
e. Change in time
2. A small positive change in free energy means:
a. The reaction is very slow
b. The reaction is endothermic
c. The reaction is not spontaneous
d. The system is becoming more disordered
e. The reaction is spontaneous
3. For a reaction with a large negative $\Delta \mathrm{S}$:
a. Heat is required to make the reaction proceed
b. The system is becoming much more ordered
c. The reaction is not spontaneous
d. The disorder of the system is increasing
e. The reaction proceeds very slowly
4. A reaction will be product-favored/spontaneous/naturally occurring if:
a. $\Delta G^{o}<0$
b. $\mathrm{K}_{\mathrm{eq}}<1$
c. $\Delta \mathrm{H}>0$
d. $\Delta \mathrm{S}^{0}<0$
e. $\mathrm{K}_{\mathrm{eq}}<0$
5. A reaction will be spontaneous at all temperature if:
a. $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {system }}>0$ and $\Delta \mathrm{S}_{\text {system }}>0$
b. $\Delta H_{\text {system }}^{o}=0$ and $\Delta S_{\text {system }}^{o}>0$
c. $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {system }}>0$ and $\Delta \mathrm{S}^{\mathrm{o}}{ }_{\text {system }}=0$
d. $\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}>0$ and $\Delta \mathrm{S}_{\text {system }}^{\mathrm{o}}<0$
e. $\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}<0$ and $\Delta \mathrm{S}_{\text {system }}^{\mathrm{o}}<0$
6. If the change in enthalpy for a reaction is positive and the change in entropy is negative:
a. The reaction releases heat
b. The reaction will never be spontaneous
c. The system is becoming more disordered
d. The reaction will always be spontaneous
e. The reaction will be spontaneous only at low temperatures
7. How are the change in Gibb's Free Energy and the equilibrium constant for a reaction related?
a. As K approaches zero, $\Delta \mathrm{G}$ approaches zero
b. They're not.
c. The value of $\Delta \mathrm{G}$ is equal to $(-\log \mathrm{K})$
d. As $\Delta \mathrm{G}$ gets more positive, K approaches 1
e. As ΔG gets more negative, K gets very large
8. For each of the following reactions, predict the sign of $\Delta \mathrm{S}^{\circ}$ and explain your answer (6 pts each):

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \Leftrightarrow\left[\mathrm{Fe}(\mathrm{Cl})_{4}\right]^{-}(\mathrm{aq})
$$

Negative. Four aqueous particles are becoming 1 aqueous particle making the system much more ordered.

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{PbCl}_{2}(\mathrm{aq})
$$

Positive. A solid is much more ordered than an aqueous solution, so this system is becoming more disordered.

$$
\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{NiCrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Negative. A solid is forming from aqueous solutions, so this system is becoming more ordered even though the coefficients in the equation make it look like 2 particles becoming 3 particles. If you really want to use a particles-to-particles argument, think of the ionic equation (or the net ionic equation) and you'll see that six reactant particles are forming 5 product particles, but the fact that a solid is forming will have a MUCH larger impact on the disorder/order of the system than the change in number of particles.
9. You are studying the reaction of aspirin $\left\{\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{~s})\right\}$ with caffeine $\left\{\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{~s})\right\}$ to produce aspeine $\left\{\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{~s})\right\}$ and caffirin $\left\{\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{~s})\right\}$. The temperature in your laboratory is $18.57^{\circ} \mathrm{C}$ and you find that $\Delta \mathrm{G}$ for this reaction is $-9.451 \mathrm{~kJ} / \mathrm{mol}$. You have also determined that for this reaction $\Delta \mathrm{S}=+87.38 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ (20pts)
a. Is the reaction endothermic or exothermic? (Explain your answer with explicit calculations.)

$$
\begin{gathered}
\Delta \mathrm{G}_{\mathrm{rxn}}=\Delta \mathrm{H}_{\mathrm{rxn}}-\mathrm{T} \Delta \mathrm{~S}_{\mathrm{rxn}} \\
\text { Plugging in: } \quad-9.4511^{\mathrm{kJ}} / \mathrm{mol}=\Delta \mathrm{H}_{\mathrm{rxn}}-(291.72 \mathrm{~K})\left(0.08738{ }^{\mathrm{kJ}} / \mathrm{mol} \cdot \mathrm{~K}\right) \\
\Delta \mathrm{H}_{\mathrm{rxn}}=16.04 \mathrm{~kJ}_{\mathrm{kjol}}
\end{gathered}
$$

Since $\Delta \mathrm{H}_{\mathrm{rxn}}$ is positive, the reaction is endothermic
b. Over what temperature range is this reaction spontaneous?

Since $\Delta \mathrm{H}_{\mathrm{rxn}}$ and $\Delta \mathrm{S}_{\mathrm{rxn}}$ are both positive, there will be a temperature where the reaction changes from spontaneous to non-spontaneous. At that temperature, $\Delta \mathrm{G}_{\mathrm{rxn}}$ will be zero.
Plugging in:

$$
\begin{gathered}
0 \mathrm{~kJ} / \mathrm{mol}=\left(16.04^{\mathrm{kJ} / \mathrm{mol})-(\mathrm{T})\left(0.08738^{\mathrm{kJ}} / \mathrm{mol} \cdot \mathrm{~K}\right)}\right. \\
\mathrm{T}=183.6 \mathrm{~K}
\end{gathered}
$$

Since the reaction is spontaneous at 291.72 K , the reaction will be spontaneous at all temperatures above 183.6K.
10. Propane $\left\{\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})\right\}$ reacts with oxygen gas in gas grills to produce carbon dioxide gas, water gas and heat. How much energy is released by burning 54.938 g of propane in an unlimited supply of oxygen? If all of this energy is used to decompose silver chloride solid to chlorine gas and silver metal, how many grams of silver metal can be produced? (25 pts)

This is a coupled systems problem, so let's get both reactions set up first.

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=1\left(23.4^{\mathrm{kJ}} / \mathrm{mol}\right)+5\left(0^{\mathrm{kJ} /} / \mathrm{mol}\right)+3\left(-394.359^{\mathrm{kJ}} / \mathrm{mol}\right)+4\left(-228.6^{\mathrm{kJ}} / \mathrm{mol}\right)=-2074.077^{\mathrm{kJ}} / \mathrm{mol} \\
& 2 \mathrm{AgCl}(\mathrm{~s}) \leftrightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=2\left(109.8^{\mathrm{kJ}} / \mathrm{mol}\right)+2\left(0^{\mathrm{kJ} / \mathrm{mol})}+1\left(0^{\mathrm{kJ} /} / \mathrm{mol}\right)=+219 . \mathrm{kJ}^{\mathrm{kJ}} / \mathrm{mol}\right.
\end{aligned}
$$

A couple notes: I pulled the $\Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ values from the table at the end of the exam. The $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$ value for the propane combustion has too many sig figs, but I'm just using that in the middle of a calculation so I'll carry extra sig figs. If I were reporting that as a final answer, I'd round to $-2074.1^{\mathrm{kJ}} / \mathrm{mol}$.

OK, let's burn that propane:
$(54.938 \mathrm{~g}$ propane $)\left(\frac{1 \mathrm{~mol} \text { propane }}{44.096 \mathrm{~g} \text { propane }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{rxn}}{1 \text { mol propane }}\right)\left(\frac{2074.077 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{rxn}}\right)=2584.0 \mathrm{~kJ}$ released
\{"Released" implies the negative sign that I dropped \}
Now we want to dump all that energy into the silver reaction to make some money...

$$
(2584.0 \mathrm{~kJ})\left(\frac{1 \mathrm{~mol} \mathrm{rxn}}{219.6 \mathrm{~kJ}}\right)\left(\frac{2 \mathrm{mols} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{rxn}}\right)\left(\frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}\right)=2539 \mathrm{~g} \mathrm{Ag}
$$

At current market prices, that's not a bad little lump of silver...
11. You would like to plate 2.18 g of platinum (atomic $\#=78$) using an electrolytic cell containing a solution of platinum(II) nitrate and operating at 5.16A. How long will you have to run the cell? (15pts)

Work with your units and this problem will largely set itself up as long as you remember that an amp (A) is a coulomb per second.

$$
(2.18 \mathrm{~g} \mathrm{Pt})\left(\frac{1 \mathrm{~mol} \mathrm{Pt}}{195.08 \mathrm{~g} \mathrm{Pt}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{e}^{-}}{1 \mathrm{~mol} \mathrm{Pt}}\right)\left(\frac{96485 \mathrm{C}}{1 \mathrm{~mol} \mathrm{e}^{-}}\right)\left(\frac{1 \mathrm{sec}}{5.16 \mathrm{C}}\right)=418 \mathrm{sec}
$$

If you prefer to convert this to minutes, go for it, 6.97 min .
12. For each of the following pairs of half-reactions/half-cells, determine the voltage of the spontaneous reaction/cell and write a balanced equation for the reaction that occurs, identifying the oxidation and reduction half-reactions. (20pts each)
$\mathrm{La}^{3+} \mid \mathrm{La}$ and $\mathrm{Sn}^{4+} \mid \mathrm{Sn}^{2+}$
First we need to determine the spontaneous direction. Looking at the standard reduction potentials, the La half-cell has to be reversed, so let's dive in:
Oxidation:

$$
\begin{aligned}
2(\mathrm{La}(\mathrm{~s}) & \left.\leftrightarrow \mathrm{La}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}\right) & \mathrm{E}_{\text {ox }}^{\circ}=+2.38 \mathrm{~V} \\
3\left(2 \mathrm{e}^{-}+\mathrm{Sn}^{4+}(\mathrm{aq})\right. & \left.\leftrightarrow \mathrm{Sn}^{2+}(\mathrm{aq})\right) & \mathrm{E}^{\circ} \mathrm{red}=+0.15 \mathrm{~V} \\
2 \mathrm{La}(\mathrm{~s})+3 \mathrm{Sn}^{4+}(\mathrm{aq}) & \leftrightarrow 2 \mathrm{La}^{3+}(\mathrm{aq})+3 \mathrm{Sn}^{2+}(\mathrm{aq}) & \mathrm{E}_{\text {cell }}^{\circ}=+2.53 \mathrm{~V}
\end{aligned}
$$

Reduction:

$\mathrm{HClO}_{\mid} \mathrm{Cl}_{2}$ and $\mathrm{NO}_{3}{ }^{-} \mid \mathrm{NO}$

This one's a little more challenging, so let's start with assigning oxidation numbers.
$\mathrm{HClO} \rightarrow$ If the H is +1 and the O is -2 , then the Cl must be +1 . (sum of ox\#'s = charge)
$\mathrm{Cl}_{2} \rightarrow$ An uncombined element in its natural/standard state, ox\# $=0$
$\mathrm{NO}_{3}{ }^{-} \rightarrow$ Assume the three O's are each -2 , that makes the $\mathrm{N}+5$. (sum of ox\#'s $=$ charge) $\mathrm{NO} \rightarrow$ Assume $\mathrm{O}=-2$, then $\mathrm{N}=+2$.

OK, now to determine the spontaneous direction. Looking at the standard reduction potentials, the nitrate halfcell has to be reversed.
Oxidation: $\quad 2\left(2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NO}(\mathrm{g}) \leftrightarrow \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{e}^{-}+4 \mathrm{H}^{+}(\mathrm{aq})\right) \quad \mathrm{E}_{\text {ox }}=-0.96 \mathrm{~V}$
Reduction: $3\left(2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}+2 \mathrm{HClO}(\mathrm{aq}) \leftrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right) \quad \mathrm{E}_{\mathrm{r}}^{\circ}$ red $=+1.61 \mathrm{~V}$
$6 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{HClO}(\mathrm{aq})+2 \mathrm{NO}(\mathrm{g}) \leftrightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{3}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+8 \mathrm{H}^{+}(\mathrm{aq}) \mathrm{E}_{\text {cell }}^{\circ}=+0.65 \mathrm{~V}$
$6 \mathrm{HClO}(\mathrm{aq})+2 \mathrm{NO}(\mathrm{g}) \leftrightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}(\mathrm{aq})$
Notes: There are two chlorines each going from +1 to 0 , so they each need an electron. Add electrons to compensate for the change in oxidation state, not necessarily the charge.

Thermodynamic Values at $\mathbf{2 5}^{\circ} \mathrm{C}$:

Substance			$\Delta \mathrm{G}^{\mathbf{o}} \mathrm{f}^{\mathrm{kJ}} / \mathrm{mol}$)
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	-103.85	270.3	-23.4
$\mathrm{O}_{2}(\mathrm{~g})$	0	205.138	0
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.509	213.74	-394.359
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	188.8	-228.6
$\mathrm{AgCl}(\mathrm{s})$	-127.0	96.3	-109.8
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	223.1	0
$\mathrm{Ag}(\mathrm{s})$	0	42.6	0

Standard Reduction Potentials at $\mathbf{2 5}^{\circ} \mathrm{C}$:

Half cell	$\mathbf{E}_{\text {red }}^{\mathbf{o}}$ (volts)	Half cell	$\mathbf{E}^{\mathbf{o}}{ }_{\text {red }}$ (volts)
$\mathrm{Pt}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}(\mathrm{s})$	+0.76	$\mathrm{HClO}(\mathrm{aq}) \mid \mathrm{Cl}_{2}(\mathrm{~g})$	+1.61
$\mathrm{La}^{3+}(\mathrm{aq}) \mid \mathrm{La}(\mathrm{s})$	-2.38	$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \mid \mathrm{NO}(\mathrm{g})$	+0.96
$\mathrm{Sn}^{4+}(\mathrm{aq}) \mid \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15		

