\qquad

Chemistry 210

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.
Avogadro's Number $=6.022 \times 10^{23}$ units $/$ mol
$32.00^{\circ} \mathrm{F}=0.000^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Density of Water $=1.000 \% / \mathrm{mL}$
$\mathrm{R}=0.08206 \mathrm{~L}^{\mathrm{Latm} / \mathrm{mol} \cdot \mathrm{K}}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{PV}=\mathrm{nRT}$
$\Delta \mathrm{T}_{\text {fp/bp }}=\mathrm{k}_{\mathrm{fp} / \mathrm{bp}} \bullet \mathrm{m} \cdot \mathrm{i}$
For water: $\quad \mathrm{k}_{\mathrm{fp}}=-1.86^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{k}_{\mathrm{bp}}=0.512^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{P}_{1}=\mathrm{X}_{1} \mathrm{P}_{1}{ }^{\circ}$
$\Pi=\mathrm{MRTi}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Integrated Rate Laws: } \\
0^{\text {th }} \text { order } \\
1^{\text {st }} \text { order } \\
\left.2^{\text {nd }} \text { order }\right]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{A}]_{\mathrm{o}} \\
\ln [\mathrm{~A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{\mathrm{o}} \\
\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}} \quad 1 /[\mathrm{A}]_{\mathrm{t}}=\mathrm{kt}+1 /[\mathrm{A}]_{\mathrm{o}} \\
\ln (\mathrm{k})=\left(\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\ln (\mathrm{A}) \\
\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugate base }]}{\text { [conjugate acid }]}\right)
\end{array} .
\end{aligned}
$$

$\begin{gathered} 58 \\ \mathrm{Ce} \end{gathered}$	$\begin{aligned} & \hline 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{gathered} \hline 60 \\ \mathbf{N d} \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{P m} \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\mathbf{T b}$	$\begin{aligned} & \hline 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \hline 67 \\ & \mathbf{H o} \end{aligned}$	$\begin{aligned} & 68 \\ & \hline \mathbf{E r} \end{aligned}$	$\begin{gathered} \hline 69 \\ \mathbf{T m} \end{gathered}$	${ }^{70}$	${ }^{71}$
$\frac{40.12}{90}$	${ }_{140.91}^{91}$	144.24	(145)	${ }_{150.36} 9$	151.97	${ }_{157}^{15} 9$	${ }_{158}^{1593}$	162.50	${ }_{169}^{1693}$	$\frac{167.26}{100}$	${ }_{\text {168.94 }}^{101}$	$\frac{173.04}{102}$	$\frac{17497}{103}$
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(24)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

1. Complete each row of the following tables for aqueous solutions at $25^{\circ} \mathrm{C}$ (4 pts per box):

$\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$	Acidic, Basic or Neutral?
1.62×10^{-9}	6.19×10^{-6}	8.792	5.208	Basic
4.81×10^{-5}	2.08×10^{-10}	4.318	9.682	Acidic

Conjugate Acid	$\mathbf{K}_{\mathbf{a}} @ \mathbf{2 5}^{\mathbf{}} \mathbf{C}$	Conjugate Base	$\mathbf{K}_{\mathbf{b}} @ \mathbf{2 5}{ }^{\mathbf{o}} \mathbf{C}$
$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	$\mathrm{HSO}_{3}{ }^{-1}$	5.9×10^{-13}
$\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{-1}$	1.6×10^{-12}	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}$ (ascorbate ion)	$\mathbf{6 . 3 \times 1 0 ^ { - 3 }}$

2. A labmate has prepared a sulfate/hydrogen sulfate buffer solution at $\mathrm{pH}=2.03$, but does not write much information down in a lab notebook. You know that the concentration of the buffer is 0.73 M and $\mathrm{pK}_{\mathrm{b}}=12.08$ for $\mathrm{SO}_{4}^{-2}(\mathrm{aq})$. Is the concentration of conjugate acid higher in this buffer or is the concentration of conjugate base in this buffer higher? Over what pH range would sulfate/hydrogen sulfate make an effective buffer? Explain your answers. (12pts)
From the given pK_{b} for SO_{4}^{-2}, we can calculate the pK_{a} for $\mathrm{HSO}_{4}{ }^{-1}$

$$
\mathrm{pK}_{\mathrm{a}}\left\{\mathrm{HSO}_{4}^{-1}\right\}=14-12.08=1.92
$$

Since the pH of the buffer is higher (more basic) than the pK_{a} of the conjugate acid, there must be a higher concentration of the conjugate base in this buffer. This system will make an effective buffer for pH 's within 1 unit of the $\mathrm{pK}_{\mathrm{a}}, 0.92$ to 2.92
3. How much $0.164 \mathrm{M} \mathrm{HClO}_{4}(\mathrm{aq})$ must be added to 25.00 mL of $0.159 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ to reach the equivalence point? What is the pH of this solution at the equivalence point? Explain. (12pts) \{Note: $\mathrm{Ba}\left(\mathrm{OH}_{2}\right.$ is a strong base.\}

$$
\begin{gathered}
2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq}) \\
\left(0.02500 \mathrm{~L} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})\right)\left(\frac{\left.0.159{\mathrm{molsBa}(\mathrm{OH})_{2}}_{\mathrm{L} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})}^{)}\right)\left(\frac{2 \mathrm{~mol} \mathrm{HClO}_{4}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}\right)\left(\frac{1 \mathrm{~L} \mathrm{HClO}_{4}(\mathrm{aq})}{0.164 \mathrm{molHClO}_{4}}\right)=0.04848 \mathrm{LHClO}_{4}(\mathrm{aq})}{48.48 \mathrm{~mL}}\right.
\end{gathered}
$$

Since this is a strong acid/strong base titration, the equivalence point should be neutral, $\mathrm{pH}=7$
4. You have prepared a buffer solution by combining 0.476 mols of nitrous acid $\left(\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.6 \times 10^{-4}\right)$ and 0.397 mols of sodium nitrite in enough water to make 500.0 mL of solution. What is the pH of this buffer solution? (12pts)
Plugging in to the Henderson-Hasselbalch equation...

$$
\mathrm{pH}=3.337+\log \left\{0.397 \mathrm{mols} \mathrm{NO}=2(\mathrm{aq}) / 0.476 \mathrm{mols} \mathrm{HNO}_{2}(\mathrm{aq})\right\}=3.26
$$

5. What is the expected pH of a 0.914 M aqueous solution of ammonium bromide? $\left\{\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.76 \times 10^{-5}\right\}$ (15pts)
Set up a table of initial/ $\Delta / @$ Equilibrium concentrations, calculate K_{a} of $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$ from the K_{b} of $\mathrm{NH}_{3}(\mathrm{aq})$, make some simplifying assumptions, and we should get down to:

$$
\begin{gathered}
5.68 \times 10^{-10}=\mathrm{x}^{2} / 0.914 \\
\mathrm{x}=2.28 \times 10^{-5}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\mathrm{pH}=4.642
\end{gathered}
$$

6. What is the K_{b} of a weak base if 500.0 mL of a solution containing 0.241 mol of the base and 0.209 mol of its conjugate acid has a pH of 8.337 ? Over what pH range would this conjugate acid/ conjugate base pair make an effective buffer? (15pts)

Plugging in to the Henderson-Hasselbalch equation..
$8.337=\mathrm{pK}_{\mathrm{a}}+\log \{0.241$ mols conj. base $/ 0.209$ mols conj. acid $\}$
$\mathrm{pK}_{\mathrm{a}}=8.275 \rightarrow \mathrm{pK}_{\mathrm{b}}=14-8.275=5.725$

Effective buffer within 1 unit of pK_{a} of the conjugate acid, $7.275 \rightarrow 9.275$
7. You are going to use a titration to determine the concentration of an unknown phosphorous acid solution $\left(\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{pK}_{\mathrm{a}}=1.29\right)$. The base you have chosen to use is 0.796 M sodium hydroxide.
a. Write out the chemical equations for the step-wise deprotonation/neutralization of phosphorous and the overall/net chemical reaction. (7pts)

Plugging in to the Henderson-Hasselbalch equation...

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{PO}_{3}^{-1}(\mathrm{aq}) \\
\mathrm{H}_{2} \mathrm{PO}_{3}^{-1}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HPO}_{3}^{-2}(\mathrm{aq}) \\
\mathrm{HPO}_{3}^{-2}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{PO}_{3}^{-3}(\mathrm{aq}) \\
\\
\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+3 \mathrm{OH}^{-1}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{PO}_{3}^{-3}(\mathrm{aq})
\end{gathered}
$$

b. Someone left your pH probe laying on the bench and it has dried out. After a short search, you have found the following three visual indicators: Thymolphthalein (TP, endpoint pH range $=9.5-10.5$); Phenol red (PR , endpoint pH range $=6.8-8.3$); Bromophenol Blue (BPB , endpoint pH range $=3.1-4.6$). Which of these visual indicators would be useful in your titration? Explain your choice(s). (6 pts)
Strong base/weak acid, the equivalence point should be basic, but which equivalence point? \{There are 3 of them...\} Given the very low pK_{a}, the pH of the first equivalence point should be fairly acidic, so BPB is probably a good indicator for the $1^{\text {st }}$ equivalence point. The second equivalence point should be somewhere around neutral (about 4-5 units higher than the first...), so PR is probably an OK indicator for the $2^{\text {nd }}$ equivalence point. The third equivalence point should be another 4-5 units higher than the second, so TP might be an OK indicator for the $3^{\text {rd }}$ equivalence point.
(\#7 continued)
c. Sketch the titration curve you would expect for this titration, labeling all equivalence points and phosphorous acid-based species present in each portion of the curve. (7pts)
d. As you are about to start your titration, a package arrives with a new pH probe, so you decide to use the pH probe to monitor your titration. You find that 25.00 mL of phosphorous acid requires 44.19 mL of sodium hydroxide to reach the second equivalence point. What is the concentration of the phosphorous acid solution? (10pts)

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+2 \mathrm{OH}^{-1}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HPO}_{3}^{-2}(\mathrm{aq}) \\
(0.04419 \mathrm{~L} \mathrm{NaOH}(\mathrm{aq}))\left(\frac{0.796 \mathrm{molsNaOH}}{\mathrm{~L} \mathrm{NaOH}(\mathrm{aq})}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{3}}{2 \mathrm{~mol} \mathrm{NaOH}}\right)\left(\frac{1}{0.02500 \mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})}\right)=0.704 \mathrm{MH}_{3} \mathrm{PO}_{3}(\mathrm{aq})
\end{gathered}
$$

e. How much sodium hydroxide solution would be required to reach the first equivalence point in part "d"? How much sodium hydroxide solution would be required to reach the third equivalence point in part "d"?Explain your answer. (6pts)
Each equivalence point is an equal step, so the volume of $\mathrm{NaOH}(\mathrm{aq})$ req uired to reach each equivalence point is the same. If it took 44.19 mL to reach the $2^{\text {nd }}$ equivalence point, then it would have taken $\{44.19 / 2\}=22.10 \mathrm{~mL}$ to reach the first. To reach the $3^{r d}$ equivalence point, we need 3 times as much $\mathrm{NaOH}(\mathrm{aq})$ as it took to reach the

$$
1^{\text {st }},\{22.10 \times 3\}=66.29 \mathrm{~mL}
$$

