Chem 210 – Exam 4 Summer 2011 **Chemistry 210**

Name:

Exam 4

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number = $6.022 \times 10^{23} \text{ units}/_{mol}$ $32.00^{\circ}\text{F} = 0.000^{\circ}\text{C} = 273.15\text{K}$ Density of Water = $1.000^{\text{g}}/_{\text{mL}}$ $R = 0.08206^{\text{L*atm}}/_{\text{mol*K}} = 8.314^{\text{J}}/_{\text{mol*K}}$ PV=nRT $\Delta T_{\text{fp/bp}} = k_{\text{fp/bp}} \cdot \text{m} \cdot \text{i}$ For water, $k_{\text{fp}} = -1.86^{\circ}\text{C}/_{\text{m}}$; $k_{\text{bp}} = 0.52^{\circ}\text{C}/_{\text{m}}$ $P_1 = X_1P_1^{\circ}$ $\Pi = \text{MRTi}$ $C_1V_1 = C_2V_2$ Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Integrated Rate Laws: $\begin{array}{ll}
0^{th} \text{ order} & [A]_{t} = -kt + [A]_{o} \\
1^{st} \text{ order} & \ln[A]_{t} = -kt + \ln[A]_{o} \\
2^{nd} \text{ order} & 1/[A]_{t} = kt + 1/[A]_{o} \\
k = Ae^{-Ea/RT} \\
\ln(k) = \left(\frac{-E_{a}}{R}\right)\left(\frac{1}{T}\right) + \ln(A) \\
\ln\left(\frac{k_{1}}{k_{2}}\right) = \frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \\
pH = pK_{a} + \log\left(\frac{[\text{conjugate base}]}{[\text{conjugate acid}]}\right)$
$$\begin{split} E_{cell} &= E_{cell}^{o} - {}^{RT}/{}_{nF} lnQ \\ E_{cell}^{o} &= {}^{RT}/{}_{nF} lnK^{o} \\ K^{o} &= e^{A}({}^{nF}/{}_{RT} E_{cell}^{o}) \\ F &= 96485 {}^{J}/{}_{V \cdot mol \ of \ electrons} \\ \Delta G^{o} &= \Delta H^{o}_{system} - T\Delta S^{o}_{system} \\ \Delta G^{o} &= -nFE_{cell}^{o} &= -RT lnK^{o} \\ \Delta G &= \Delta G^{o} + RT lnQ \\ F &= 96485 {}^{C}/{}_{mol \ electrons} \\ 1A &= 1 \ C / sec \end{split}$$

	_																
1																	2
H																	He
3	4											5	6	7	8	9	10
Li	Be											B	Ċ	N	Ô	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(258)	(258)	(259)	(260)

Chem 210 - Exam 4Name: _____Summer 2011Multiple Choice (5pts each): Circle the letter of the most correct response.

- 1. A large negative change in free energy means:
 - a. The reaction is very slow
 - b. The reaction is exothermic
 - c. The reaction is not spontaneous
 - d. The system is becoming more disordered
 - e. The reaction is spontaneous
- 2. For a reaction with a small negative ΔS :
 - a. Heat is liberated by the reaction
 - b. The system is becoming more ordered
 - c. The reaction is not spontaneous
 - d. The disorder of the system is increasing
 - e. The reaction proceeds very quickly
- 3. If the change in enthalpy for a reaction is positive and the change in entropy is negative:
 - a. The system is becoming more disordered
 - b. The reaction releases heat
 - c. The reaction will be spontaneous at all temperatures
 - d. The reaction will be non-spontaneous at all temperatures
 - e. The reaction will be spontaneous only at low temperatures
- 4. A reaction will be product-favored/spontaneous if:
 - a. $\Delta G < 0$
 - b. $\Delta S > 0$
 - c. $K_{eq} < 1$
 - d. $\Delta H > 0$
 - e. $\Delta S < 0$
- 5. How are the change in Gibb's Free Energy and the equilibrium constant for a reaction related?
 - a. As K approaches zero, ΔG approaches zero
 - b. The value of ΔG is equal to (-logK)
 - c. As ΔG gets more positive, K approaches 1
 - d. They're not.
 - e. As ΔG gets more negative, K gets very large
- 6. Give the oxidation number for each atom in the following formulas. (15pts)

 K_2SO_3

 CO_2

 CH_4

Chem 210 – Exam 4 Summer 2011 Name: ____

7. For each of the following reactions, predict whether the sign if ΔS° will be positive or negative and explain your answer. (12pts)

 $Pb(NO_3)_2(aq) + 2 NaCl(aq) \implies PbCl_2(s) + 2 NaNO_3(aq)$

 $2 \operatorname{NO}_2(g) \Leftrightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$

8. For liquid water $S^{\circ} = +69.91^{J}/_{mol \cdot K}$ and for gaseous water $S^{\circ} = +188.825^{J}/_{mol \cdot K}$. Explain this difference. (10pts)

9. Methane, CH₄(g), burns in oxygen to form carbon dioxide and water. How much energy is released during the formation of 21.95g of water by this reaction? (20pts)

10. You are studying the reaction of benzoic acid {C₆H₅CO₂H(s)} with methanol {CH₃OH(l)} to produce methylbenzoate {C₈H₈O₂(l)} and water. When you run the reaction at 17.61°C, you find that ΔG for this reaction is -47.92^{kJ}/_{mol} and $\Delta S = +34.18^{J}/_{mol \cdot K}$ (20pts)

a. Is the reaction endothermic or exothermic? (Explain your answer with explicit calculations.)

b. Over what temperature range is this reaction spontaneous?

Name: _____

Chem 210 – Exam 4 Summer 2011

11. You have burned 65.95g of ethane $\{C_2H_6(g)\}$ in oxygen to form carbon dioxide and water. If all of the Gibb's Free Energy liberated by this reaction is used to decompose iron(III) chloride to iron metal and chlorine gas, how many grams of iron metal will be formed? (25pts)

12. For each of the following *unbalanced* chemical reactions, identify and write the oxidation and reduction half-reactions, and write the balanced redox reaction. (25pts)

 $Ce^{4+}(aq) + Al(s) \Leftrightarrow Ce^{3+}(aq) + Al^{3+}(aq)$

$$\operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{Ni}^{2+}(\operatorname{aq}) \iff \operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq}) + \operatorname{Ni}(\operatorname{s})$$

Thermodynamic Values at 25°C:

Substance	$\Delta H^{o}_{f} (^{kJ}/_{mol})$	S ^o (^J / _{mol•K})	$\Delta G^{o}_{f} (^{kJ}/_{mol})$
$CH_4(g)$	-74.8	186.3	-50.8
$O_2(g)$	0	205.138	0
$CO_2(g)$	-393.509	213.74	-394.359
$H_2O(l)$	-285.83	69.91	-237.129
$H_2O(g)$	-241.818	188.825	-228.572
$C_2H_6(g)$	-84.68	229.5	-32.89
FeCl ₃ (s)	-400.39	142.3	-334.18
Fe(s)	0	27.15	0
$Cl_2(g)$	0	222.96	0