\qquad

Chemistry 210

Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.
Avogadro's Number $=6.022 \times 10^{23}$ units $/ \mathrm{mol}$
$32.00^{\circ} \mathrm{F}=0.000^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Density of Water $=1.000^{8} / \mathrm{mL}$
$\mathrm{R}=0.08206 \mathrm{~L}^{\mathrm{L} \text { att } / \mathrm{mol} \cdot \mathrm{K}}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{PV}=\mathrm{nRT}$
$\Delta \mathrm{T}_{\text {fp/bp }}=\mathrm{k}_{\mathrm{fp} / \mathrm{bp}} \bullet \mathrm{m} \cdot \mathrm{i}$
For water: $\quad \mathrm{k}_{\mathrm{fp}}=-1.86^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{k}_{\mathrm{bp}}=0.512^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{P}_{1}=\mathrm{X}_{1} \mathrm{P}_{1}{ }^{\circ}$
$\Pi=\mathrm{MRTi}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Integrated Rate Laws: } \\
0^{\text {th }} \text { order } \\
1^{\text {st }} \text { order } \\
\quad[\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{A}]_{\mathrm{o}} \\
2^{\text {nd }} \text { order }[\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{\mathrm{o}} \\
\mathrm{k}=\mathrm{Ae}^{-\mathrm{E} a \mathrm{RT}} \quad 1 /[\mathrm{A}]_{\mathrm{t}}=\mathrm{kt}+1 /[\mathrm{A}]_{\mathrm{o}} \\
\ln (\mathrm{k})=\left(\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\ln (\mathrm{A}) \\
\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugate base }}{\text { [conjugate acid }]}\right)
\end{array}
\end{aligned}
$$

58	59	${ }^{60}$	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
${ }_{140.12}$	140.91	14.24	(145)	${ }_{50.36}$	151.97	57.25	58.93	162.50	164.93	167.26	168.94	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(24)	(243)	(24)	(247)	(251)	(252)	(258)	(258)	(299)	(260)

Multiple Choice (4pts each): Circle the letter of the most correct response.

1. A large negative change in free energy means:
a. The reaction is very slow
b. The reaction is exothermic
c. The reaction is not spontaneous
d. The system is becoming more disordered
e. The reaction is spontaneous
2. For a reaction with a small negative $\Delta \mathrm{S}$:
a. Heat is liberated by the reaction
b. The system is becoming more ordered
c. The reaction is not spontaneous
d. The temperature of the system is increasing
e. The reaction proceeds very quicky
3. A reaction will be product-favored/spontaneous if:
a. $\Delta \mathrm{G}^{\mathrm{o}}<0$
b. $\mathrm{K}_{\mathrm{eq}}<1$
c. $\Delta \mathrm{H}>0$
d. $\Delta \mathrm{S}^{\circ}<0$
e. $\mathrm{E}^{\circ}{ }_{\text {cell }}<0$
4. A reaction will be spontaneous at relatively high temperature and non-spontaneous at relatively low temperature if:
a. $\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}>0$ and $\Delta \mathrm{S}_{\text {system }}^{\mathrm{o}}>0$
b. $\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}<0$ and $\Delta \mathrm{S}_{\text {system }}^{\mathrm{o}}>0$
c. $\Delta \mathrm{H}_{\text {system }}^{\circ}>0$ and $\Delta \mathrm{S}_{\text {system }}^{\circ}=0$
d. $\Delta \mathrm{H}_{\text {system }}^{\circ}>0$ and $\Delta \mathrm{S}_{\text {system }}^{\circ}<0$
e. $\Delta \mathrm{H}_{\text {system }}^{\circ}<0$ and $\Delta \mathrm{S}_{\text {system }}^{\circ}<0$
5. In a spontaneous electrochemical voltaic cell, which of the following is true?
a. The cell potential is zero
b. Oxidation occurs at the cathode
c. Electrons flow from the cathode to the anode
d. Cations flow through the salt bridge from the cathode to the anode
e. The metal cathode gains mass as the cell reaction proceeds
6. For a spontaneous redox reaction, which of the following is $f a l s e$?
a. Oxidation is the process of losing electrons
b. Gaining electrons is reduction
c. Electrons appear on the left side of the oxidation half reaction
d. Water molecules are added to balance any extra oxygen atoms
e. $\Delta \mathrm{G}$ is negative.
7. How are the change in Gibb's Free Energy and the equilibrium constant for a reaction related?
a. As K approaches zero, $\Delta \mathrm{G}$ approaches zero
b. They're not.
c. The value of $\Delta \mathrm{G}$ is equal to $(-\log \mathrm{K})$
d. As $\Delta \mathrm{G}$ gets more positive, K approaches 1
e. As $\Delta \mathrm{G}$ gets more negative, K gets very large

Problems:

8. For each of the following reactions, predict the sign of $\Delta \mathrm{S}^{\circ}$ and explain your answer (5pts each):

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \Leftrightarrow \mathrm{MgSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

9. Give the oxidation number for each atom in the following formulas. (5pts each formula)

$$
\mathrm{K}_{2} \mathrm{SO}_{3} \quad \mathrm{CH}_{3} \mathrm{OH}
$$

10. You are studying the reaction of acetic acid $\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})\right\}$ with iso-propanol $\left\{\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{l})\right\}$ to produce isopropylacetate $\left\{\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}(\mathrm{l})\right\}$ and water. When you run the reaction at $22.67^{\circ} \mathrm{C}$, you find that $\Delta \mathrm{G}$ for this reaction is $-35.19^{\mathrm{kJ} /} / \mathrm{mol}$ and $\Delta \mathrm{S}=+79.18 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ (10pts)
a. Is the reaction endothermic or exothermic? (Explain your answer with explicit calculations.)
b. Over what temperature range is this reaction spontaneous?
11. The alkaline earth metals ($\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) all appear in your Standard Reduction Potential tables in half-cells of the type:

$$
\mathrm{M}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{M}(\mathrm{~s})
$$

Explain the trend in $\mathrm{E}_{\text {red }}^{\mathrm{o}}$ for these metals. (10 pts)
12. You are studying a process for which $\Delta \mathrm{H}^{\circ}=+30.71^{\mathrm{kJ}} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}=+192.44^{\mathrm{J}} / \mathrm{mol} \cdot \mathrm{K}$. What is $\Delta \mathrm{G}^{\circ}$ for this process at $25.00^{\circ} \mathrm{C}$? Will the reaction be more or less spontaneous at $20.00^{\circ} \mathrm{C}$? (8 pts)
13. Ammonia $\left\{\mathrm{NH}_{3}(\mathrm{~g})\right\}$ can burn in oxygen to form nitrogen dioxide and water. How much $\{$ Gibb's Free $\}$ energy can be liberated by burning 15.772 g of ammonia in an unlimited supply of oxygen? (10pts)
14. For each of the following pairs of half-reactions/half-cells, determine the voltage of the spontaneous reaction/cell and write a balanced equation for the spontaneous reaction, identifying the oxidation and reduction half-reactions. (10pts each)
$\mathrm{Au}^{3+}(\mathrm{aq}) \mid \mathrm{Au}(\mathrm{s})$ and $\mathrm{Sn}^{4+}(\mathrm{aq}) \mid \mathrm{Sn}^{2+}(\mathrm{aq})$

```
\(\mathrm{Al}^{3+}(\mathrm{aq}) \mid \mathrm{Al}(\mathrm{s})\) and \(\mathrm{F}_{2}(\mathrm{~g}) \mid \mathrm{F}^{-1}(\mathrm{aq})\)
```

$\mathrm{PbO}_{2}(\mathrm{~s}) \mid \mathrm{Pb}(\mathrm{s})$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}(\mathrm{aq}) \mid \mathrm{Cr}^{3+}(\mathrm{aq})$
15. After a strong storm, you are without electricity and would like to construct a flashlight from some materials you have found in your garage. You have a lightbulb that will produce light if you apply a voltage greater than 0.80 V . You have found the following materials: a box of iron (Fe) nails, a silver (Ag) necklace, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{FeSO}_{4}$, and AgNO 3 . What cell(s) can you construct to power your flashlight? Explain your choices. (12 pts)
16. How many grams of ethane $\left\{\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\right\}$ would you have to burn to liberate enough Gibb's Free Energy to break 14.227 g of $\mathrm{CaO}(\mathrm{s})$ into $\mathrm{Ca}(\mathrm{s})$ and $\mathrm{O}_{2}(\mathrm{~g})$? (Assume 100% efficiency.) (12 pts)
17. When nitrogen gas and oxygen gas are sealed in a vessel, reactions occur that generate $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$. If these are the only products, and $\Delta \mathrm{G}^{\mathrm{o}}$ is the only factor that affects the composition of this mixture, which of these products would you expect to be present in higher quantity at the end of the reaction? (Explain your answer with explicit calculations/numbers.) (10 pts)

Thermodynamic Values at $\mathbf{2 5}^{\circ} \mathrm{C}$:

Substance	$\Delta \mathbf{H}_{\text {f }}{ }^{\text {(}{ }^{\text {JJ/ }} \text { mol }}$)	$\mathrm{S}^{\mathbf{0}}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$	$\Delta \mathbf{G}_{\text {f }}\left({ }^{\mathrm{kJ}} / \mathrm{mol}^{\text {a }}\right.$)
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.11	+192.45	-16.45
$\mathrm{O}_{2}(\mathrm{~g})$	0	+205.138	0
$\mathrm{NO}_{2}(\mathrm{~g})$	+33.18	+240.06	+51.31
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	+188.8	-228.6
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8	+69.91	-237.2
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.68	+229.2	-32.0
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	+213.6	-394.4
$\mathrm{CaO}(\mathrm{s})$	-635.1	+39.75	-604.0
$\mathrm{Ca}(\mathrm{s})$	0	+41.4	0
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	+9.16	+304.2	-81.7
$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$	+11.3	+355.6	-94.4

Standard Reduction Potentials at $\mathbf{2 5}^{\circ} \mathrm{C}$:

Half cell	$\mathbf{E}_{\text {red }}^{\mathbf{o}}($ volts $)$		
$\mathrm{Au}^{3+}(\mathrm{aq}) \mid \mathrm{Au}(\mathrm{s})$	-1.50		
$\mathrm{Sn}^{4+}(\mathrm{aq}) \mid \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15		
$\mathrm{Al}^{3+}(\mathrm{aq}) \mid \mathrm{Al}(\mathrm{s})$	-1.676		
$\mathrm{~F}_{2}(\mathrm{~g}) \mid \mathrm{F}^{-1}(\mathrm{aq})$	+2.87		
$\mathrm{PbO}_{2}(\mathrm{~s}) \mid \mathrm{Pb}(\mathrm{s})$	+1.93		
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}(\mathrm{aq}) \mid \mathrm{Cr}^{3+}(\mathrm{aq})$	+1.33		
$\mathrm{Fe}^{3+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$	-0.04		

Half cell	$\mathbf{E}_{\text {red }}^{\mathbf{o}}$ (volts)
$\mathrm{Be}^{+2}(\mathrm{aq}) \mid \mathrm{Be}(\mathrm{s})$	-1.97
$\mathrm{Mg}^{+2}(\mathrm{aq}) \mid \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Ca}^{+2}(\mathrm{aq}) \mid \mathrm{Ca}(\mathrm{s})$	-2.84
$\mathrm{Sr}^{+2}(\mathrm{aq}) \mid \mathrm{Sr}(\mathrm{s})$	-2.89
$\mathrm{Ba}^{+2}(\mathrm{aq}) \mid \mathrm{Ba}(\mathrm{s})$	-2.92
$\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Ag}^{+}(\mathrm{aq}) \mid \mathrm{Ag}(\mathrm{s})$	+0.799

