\qquad

Chemistry 210

Exam 3
Be sure to put your name on each page. This page can be removed from your exam so that you will have a Periodic Table handy throughout the exam, it does not need to be turned in. Show all your work for problems which require any sort of calculation, no credit will be given for answers without work shown. If you have shown a significant amount of work or multiple drawings for a problem, draw a box around what you consider your final answer.

Avogadro's Number $=6.022 \times 10^{23}$ units $/ \mathrm{mol}$
$32.00^{\circ} \mathrm{F}=0.000^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Density of Water $=1.000^{\circ} / \mathrm{mL}$
$\mathrm{R}=0.08206^{\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$1 \mathrm{~atm}=760$ torr $=760 \mathrm{mmHg}=101.325 \mathrm{kPa}$
$\mathrm{PV}=\mathrm{nRT}$
$\Delta \mathrm{T}_{\mathrm{fp} / \mathrm{bp}}=\mathrm{k}_{\mathrm{fp} / \mathrm{bp}} \cdot \mathrm{m} \cdot \mathrm{i}$
For water: $\quad \mathrm{k}_{\mathrm{fp}}=-1.86^{\circ} \mathrm{C} / \mathrm{m}$ $\mathrm{k}_{\mathrm{bp}}=0.512^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{P}_{1}=\mathrm{X}_{1} \mathrm{P}_{1}{ }^{\circ}$
$\Pi=\mathrm{MRTi}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& \text { Integrated Rate Laws: } \\
& 0^{\text {th }} \quad[\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{A}]_{\text {o }} \\
& 1^{\text {st }} \quad \ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0} \\
& 2^{\text {nd }} \quad 1 /[\mathrm{A}]_{\mathrm{t}}=\mathrm{kt}+1 /[\mathrm{A}]_{\mathrm{o}} \\
& \mathrm{k}=A \mathrm{e}^{-\mathrm{E} / \mathrm{RT}} \\
& \ln (\mathrm{k})=\left(\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\ln (\mathrm{A}) \\
& \ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugate base }]}{\text { [conjugate acid }]}\right)
\end{aligned}
$$

If you use $C_{1} V_{1}=C_{2} V_{2}$ to calculate a titration, you will receive zero points for that problem.
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-{ }^{\mathrm{RT}} / \mathrm{nF}^{2} \ln \mathrm{Q}$
$\mathrm{E}^{\mathrm{o}} \mathrm{cell}={ }^{\mathrm{RT}} / \mathrm{nF}_{\mathrm{nF}} \ln \mathrm{K}^{\mathrm{o}}$
$\mathrm{K}^{\mathrm{o}}=\mathrm{e}^{\wedge}\left({ }^{\mathrm{nF}} /{ }_{\mathrm{RT}} \mathrm{E}_{\text {cell }}^{\mathrm{o}}\right)$
$\mathrm{F}=96485 \mathrm{~J} / \mathrm{V} \cdot \mathrm{mol}$ of electrons
$\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}_{\text {system }}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}^{\mathrm{o}}$
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}{ }_{\text {cell }}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{K}^{\mathrm{o}}$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\mathrm{o}}+\mathrm{RT} \ln \mathrm{Q}$
$\mathrm{F}=96485^{\mathrm{C}} /$ mol electron
$1 \mathrm{~A}=1 \mathrm{C} / \mathrm{sec}$

$\begin{aligned} & 57 \\ & \hline \mathbf{L a} \end{aligned}$	$\begin{gathered} 58 \\ \mathrm{Ce} \end{gathered}$	Pr	Nd	Pm	Sm	$\mathbf{E u}^{63}$	$\begin{aligned} & 64 \\ & \mathbf{G d} \end{aligned}$	$\mathbf{T b}$	Dy	Ho	Er	Tm	$\mathbf{Y b}$
	140.12												
Ac	Th	Pa	U	N	Pu	A	Cm	Bk	Cf	Es	Fm	Md	No

\qquad

1. Complete each $\underline{\boldsymbol{r o w}}$ of the following tables for aqueous solutions at $25^{\circ} \mathrm{C}$ (5 pts per box):

$\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$	Acidic, Basic or Neutral?
			2.664	
6.348×10^{-11}				

Conjugate Acid	$\mathbf{K}_{\mathbf{a}} @ \mathbf{2 5}^{\mathbf{o}} \mathbf{C}$	Conjugate Base	$\mathbf{K}_{\mathbf{b}} @ \mathbf{2 5}^{\mathbf{}} \mathbf{C}$
$\mathrm{H}_{2} \mathrm{SeO}_{3}$			2.85×10^{-12}
	2.1×10^{-9}	BrO^{-1}	

Problems: Show your work.
2. You are studying the reaction:

$$
2 \mathrm{NH}_{2} \mathrm{OH}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \leftrightarrows \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}=2.663 \times 10^{-4}
$$

At some point the following concentrations are observed:

$$
\left[\mathrm{NH}_{2} \mathrm{OH}\right]=0.228 \mathrm{M},\left[\mathrm{CH}_{4}\right]=0.304 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}\right]=3.18 \times 10^{-2} \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.184 \mathrm{M}
$$

Is the reaction at equilibrium at this point? If not, does the reaction have to shift to the left toward reactants to reach equilibrium or does it have to shift to the right toward products to reach equilibrium? (10pts)
3. What is the expected pH of a 0.372 M aqueous solution of sodium nitrite? $\left\{\mathrm{K}_{\mathrm{b}}\left(\mathrm{NO}_{2}^{-1}\right)=1.41 \times 10^{-11}\right\}$ (10pts)
\qquad
4. How much $0.219 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ must be added to 20.00 mL of $0.183 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to reach the equivalence point? What is the expected pH of this solution at the equivalence point? Explain. (10pts)
5. You have prepared a buffer solution by combining 0.391 mols of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, \mathrm{K}_{\mathrm{a}}=6.28 \times 10^{-4}\right)$ and 0.228 mols of potassium benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{~K}\right)$ in enough water to make 750.0 mL of solution. What is the expected pH of this buffer solution? (10pts)
6. What is the K_{a} of a weak acid if 500.0 mL of a solution containing 0.149 mol of its conjugate base and 0.128 mol of the acid has a pH of 4.992 ? Over what pH range would this conjugate acid/ conjugate base pair make an effective buffer? (10pts)
\qquad
7. You would like to titrate an unknown solution of silicic acid $\left(\mathrm{H}_{4} \mathrm{SiO}_{4}, \mathrm{pK}_{\mathrm{a} 1}=4.92, \mathrm{pK}_{\mathrm{a} 2}=7.02, \mathrm{pK}_{\mathrm{a} 3}=9.84, \mathrm{pK}_{\mathrm{a} 4}=\right.$ 13.28) with a $0.264 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$.
a. Write out the chemical equations for the step-wise deprotonation/neutralization of silicic acid and the overall/net chemical reaction. (8pts)
b. Sketch the titration curve you would expect for this titration, labeling all equivalence points and silicic acid-based species present in each portion of the curve. Wherever reasonable, include pH values. (10pts)
c. You titrate 20.00 mL of the unknown silicic acid solution to the third equivalence point with 38.72 mL of 0.264 M $\mathrm{NaOH}(\mathrm{aq})$. What is the concentration of the unknown silicic acid solution? (10pts)
\qquad
8. You will be performing a series of titration described below and have the following acid-base visual indicators available:

Indicator Name:	Endpoint pH Range:
Cresol Red	$1.0-2.0$
Congo Red	$3.1-4.9$
Phenol Red	$6.4-8.0$
Thymol Blue	$8-9.6$
Orange G	$11.5-14.0$

For each titration, choose an appropriate acid-base visual indicator and explain (briefly) your choice. You may use any of the indicators more than once, and some indicators might not be used at all. (12pts)

Titration:	Indicator Choice:	Explain:
A titration with a known equivalence		
point at $\mathrm{pH}=4$.		
A 0.925M NaOH(aq) solution being		
titrated with $1.031 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$		

